Welcome welcome page Zoom Room Zoom logo ToDoodles Jamboard logo Calculator scientific calculator on Desmos       valid HTML 4.01
Skill Topics
Shapeshifting Topic Mad  Science Topic Justice Topic Typicality Study Skills
Application Topics
Playgrounds Health Decisions Topic Personal Finance Decisions Topic Business Decisions Topic
Resources
Being a Mather Class Library LCC Resources Syllabus Achievements

Math OER
Study Skills

This time, like all times, is a very good one, if we but know what to do with it.
    - Ralph Waldo Emerson

Study Skills

There are several kinds of math study skills.

Math classes have their own best ways to take notes, do homework, cooperate in groups, and prepare for tests.

Any learning can benefit from time management and brain awareness, and for math these are especially important.

Finally, you will do better with certain attitudes about success, thinking, and getting or receiving help.

If you have never been taught all these study skills then of course you felt overwhelmed by previous math classes. You were actually trying to learn two classes at once: the math topics and these study skills.

Once you learn these study skills, your classmates will look at you and say, "You are such a good student!" What they mean is, "I am still doing a double curriculum but you're not. You are passing the class while doing half the work."

Please read all of this page at the start of the term. This page is organized with the highest priority study skills first. The study skills will naturally arise as tangents from our math topics, which will have links to this page to revisit them.

Please keep in mind that a college math class is not a spectator sport! Our pace is faster than a high school math class. You are responsible for not falling behind, which for most students requires doing work outside of class for 3 to 6 hours each week, preferably some work each day.

For a slightly different perspective on study skills, please refer to the LCC Core Learning Outcomes and the Four Cs of Foothill College. Learning math includes improving in communicating about math, using math facts and formulas, and deciding when and how math aids understanding personal and community issues.

Truth, Wisdom, and Encouragement

Anything new is hard. But the math topics we study are not themselves hard. All of them become okay, if not easy, with enough practice.

Our class is about turning free time into achievements. If you put in the time, you can pass the class. If you put in more time, you can earn a B or A. Some students with jobs and kids are too busy to put in that much time during a single term. There is no shame in needing two terms if you have many real-life responsibilities. It happens all the time.

I have taught developmental math for over forty terms. Among all those hundreds of students I have only had one who could not pass the class after putting in the required time. (She had her own circumstances.) If you have a weak math background it might take you a bit more time than if you have a strong background. But it is still just an amount of time. Study, practice, do homework, and do practice tests. You can succeed.

One reason our class is simply a matter of time is that brains experience training and growth like muscles. Research shows that people of all ages can form new brain connections, larger brain cells, and deeper brain networking. These changes happen most when doing something new—and they can be permanent improvements! However, just like building muscle, improvement only happens through effort and challenge. (Watching the instructor solve problems does not exercise your own brain.) And just like for building muscle there are proven techniques that are efficient and keep increases happening. (Think of your instructor as a "study skills coach" and the study skills as exercise techniques that prevent you from getting stuck on a low plateau.)

We start each class with homework questions. No questions are silly. You will never be the only student with that question. If you already knew all the answers, you would not be in our class!

Never be ashamed of how many mistakes you make. I assure you that by the time I earned my masters degree in mathematics I had made more math mistakes than you will make during your entire life. In fact, unless you have a family member who also pursues a graduate degree in mathematics, by the age of 21 I surely had made more math mistakes than your entire family will ever make in their entire lives. You will never catch up! Bwahahahahaha.

If you are not doing as well as you would like, I would appreciate you talking to me about it. I can probably help you brainstorm ways to become more efficient with your studying and more successful in the class.

Planning

Before the Term Begins

A math class is like a construction project. Before the real work begins there is organizing and planning to do.

Students are already behind if they instead treat a math class like a drag race, with a rushed start when they arrive at the clasroom.

How can you get ready for a math class during before the term begins?

People

support network

Organize your support network. Consider what help you will need from other people. Thank your support network people in advance as a "heads up" that you might be seeking their help during the term. Do you a backup babsitter? Do you have someone who can drive you to class if your vehicle breaks down?

A famous saying by Jim Rohn claims, "People are the average of the five other people they spend the most time with." That may not be entirely true. But consider if you already have a close friend who can help with math, and provide support for your math learning outside of the time you have scheduled as math study time. If you do not already have that person, could you find someone for the duration of the academic term?

Math students have more success and fun when they work in groups. You can be proactive and arrange a study group even before the term begins. Get the instructor's e-mail. Because your instructor can only share student personal information with explicit permission, write a study group help request with details about when, where, and what contact information you are asking be shared. One example coud be "Someone wants a weekly study group that will meet on Thursdays or Thursdays (but not both) after dinner for an hour. Please let the instructor know." Another example is "Hi! I'm Valerie. I want someone to be sitting by the phone on Saturdays at 1:00 pm so we can call each other if we are stuck. Please call me at this phone number if you are interested." Your instructor can forward your request to the entire class.

Time

The hours each week set aside for homework are as important a part of your "class schedule" as the classes themselves. Do you need to adjust the hours you work? Do you need to arrange for more babysitting? Handle those details.

A typical LCC class will have 2 hours of homework for every 1 hour in class. So every credit is expected to need 3 hours each week. This allows estimating your school and job workload:

The School and Job Work Load Formula

Total Hours = (credits of classes × 3) + hours of work

If your answer is more than 40 then beware! Contact you instructor before class begins to check in, and maybe ask for advice about resources and time management.

Schedule when to do homework for 20 to 30 minutes as soon as possible after class. Then schedule when to do the rest of your homework.

Many instructors are willing to use their office hours as study sessionss. This can be very helpful!

Look over the student responsibilities. Which need some work? Which need the kind of work that someone else can help with?

Many students have trouble asking questions during class. If you are like that, find a personal reward or wager that will motivate you to ask some questions. Perhaps you will buy yourself a certain treat on the weekend if you asked at least one question during every class that week. Perhaps you will pick a friendly classmate and agree that each week whomever asks more questions during class will buy the other a coffee. Plan your bribe and put it on your calendar!

Determination

If your life is busy or full of drama, set your mind to never give up. Students fail low-level math classes because they do not study enough—usually because they cannot make time to study enough in one term.

Past terms have shown that roughly one-fifth of Math 20 students, and one-tenth of other developmental math students, need to use time from two terms before the pass the class. For various personal reasons one term simply does not have enough hours. I have seen that students that take two terms usually invest comparable time overall to their classmates who pass in one term, but spread out the time over twenty weeks instead of ten. They are only less efficient in terms of financially paying for more credits.

When this does happen it is regrettable. The student must pay for more credits, and might delay graduation. It might also mess up financial aid plans. But as a "Plan B" it does indeed work for a lot of students. There is nothing shameful about a busy student needing two terms to finish a math class.

Start the term aiming for a good letter grade! Start the term aiming to finish in one term! But also remember that if real life gets demanding you can keep doing the best you can, change to pass/fail, and finish up in a future term.

Test Preparation

Review the foundational math from the previous class. Re-read the textbook chapters or your notes, but cover the steps of the example problems with a piece of paper so you check if you can do the example problems yourself.

From that previous class, look at chapter tests or cumulative tests. Try to get an old final exam (or practice final) and take it. Take an old test in an environment as much like your upcoming classroom as possible.

Make note of which problems you miss. Either study those topics on your own, get help at the Math Resource Center, or at the start of the new term be ready to ask your new instructor to do those review questions.

During the Term

Nothing is a waste of time if you use the experience wisely.
    - Rodin

The key is in not spending time, but in investing it.
    - Stephen R. Covey

People

Care for your support network. This helps you be prepared for a struggle, even if you cannot predict it. Even small problems can become huge crises for people without a support network.

Only a few decades ago nearly everyone had a huge support network. People had family nearby, all the neighbors as close friends, a religious congregation to call on for help, and a circle of friends you saw often because of a hobby.

The common trait shared by most students who fail a low-level math class is the lack of a support network. So even though school and family and work keeps you busy, make an effort to spend time with friends and be active in a social hobby or religious community. It might sound like an odd thing for a math instructor to say, but over the years I have known plenty of students who might have passed the class if they spent less time on homework and more time knitting, volunteering, or getting to know other single parents at the library/parks/gyms.

Remember the importance of studying in a group. Explaining a math topic to someone else helps you really learn it! Having a math topic explained to you by someone other than the instructor also helps.

Time

Budget time for problems. Some people plan their week so full that they would always be busy even if no problems arise. When problems do appear, those people have no time to deal with them. So keep some cushion in your calendar. Maybe you will be fortunate and have some free time because no problems happened!

During the rush of school and work, adopt a long-term view. Most problems do not look so large when seen from a long-term view.

Determination

Spot the Main Character by Jaiden Animations

At the start of any class it can feel like the instructor is the main character of the story who makes the rules and dances in the spotlight at the front of the room, and you are only a side character. That is naturally. But it should change. Sometime during the term the story becomes your story. You are the main character. The story is about your progress and learning. The instructor is a side character, merely another resource you use. When that happens you are halfway to passing the class.

Respect your determination. Your success is from your effort, not some "one thing" that will make life easier. Over the years I have known many students who fixate too much on a new math tutor they just found, a new job with better hours that they are about to start, a tax rebate they are about to receive, etc. It is nice when our lives improve. But new things usually come with new stresses, and you still have to do all the homework and all the studying. Do not needlessly ride an emotional roller coaster.

Respect your investment of hard work in your scratch paper step-by-step answers from homework and tests. Fix the problems you missed so you have correct answers usable for future studying. These fixed problems are usually the most helpful to try explaining to someone else. Be the teacher in your study group, or to a family member or stuffed animal at home.

Press deeper for the why. The more you understand why the math topics work the less you have to memorize how they work. Understanding is better than routines. Simple routines are better than complex routines.

Test Preparation

Make your notes as helpful as possible. You want a "best parts of what I learned" organized in one place so that you only need to go to that one place before and during a test. Include completed practice tests. Make sure every topic has explanation, example problems, and comments about struggles (if any steps are tricky, if any homework problem stumped you) to help you remember where to do extra studying.

The day before the test write a cheat-sheet. Even if the test does not allow you to use a paper or index card of notes, the process of preparing the cheat-sheet is a great way to study. You will need to decide which math topics are the most important, most difficult, or most helped by seeing an example problem. You will memorize parts of the cheat-sheet, which will allow you to work faster during the test.

During the week before the test, pace yourself as you study. By the time you get to the day before the test you should be doing less studying than earlier in the week and more wellness care.

The day before the test get enough healthy food, exercise and sleep. Be good to your brain, so it can be good to you.

Do the quick problems first. If a problem turns out to be tricky or long, leave space on your scratch paper and keep going. Keep track of the problems you skip: either use marks by the problems or be careful with an answer key.

To get the most partial credit on problems, learn to "fake it" when you cannot remember a fact (for our class this is usually a measurement unit conversion). For example, perhaps you know how to do unit conversion problems but forgot how many feet are in one mile. Write a quick excuse and do the best you can. A student who writes, "I can't remember, so pretend 6,000 feet = 1 mile" and continues will get a more partial credit than a student who stops halfway through that problem.

The Hidden Curriculum

The hidden curriculum is those school skills never explicitly taught in a classroom: how to fill out forms, how to deal with prerequisites and requirements, when and how to ask for help, when and how to advocate for yourself, how to get the most out of study sessions, how to get yourself through needed but difficult doorways, etc.

hidden curriculum for teachers too Too often a school assumes students are aware of and experienced with the topics in the hidden curriculum. Someone smiles and says, "Just fill out this easy form!" Or someone says, "Well, if you had talked to the Financial Aid office two weeks ago..."

Do not be afraid to ask questions about hidden curriculum issues during our meetings. Be kind and offer to help your classmates with your own expertise in dealing with it.

Proper Nagging

Expected nagging can be polite. There is a reason that all medical appointments give people reminders. Many other social contracts involve nagging. Nagging is a normal part of adult responsibilities and business interactions.

happy nagging My teaching role somewhat resembles the work of an athletic personal trainer. I am supposed to model correct procedures. Then I am supposed to pester you. "Five more problems! Five more reps! Don't give up! You have not finished studying until we see you sweat! Go go go!"

Since you are adults who are responsible for your own time management, our class begins with one type of nagging by default. If you are falling behind in homework, I will nag you by e-mail or phone to help you avoid getting a minus after your letter grade.

If you need other types of nagging, please ask. It is part of my job. If I forget to nag you, nag me about it!

Finally, we should all be up-front about how nagging is a cultural issue.

Some families do not know how to nag lovingly, and so do not teach this skill to next generation. In those families nagging is only a negative consequence, often doled out hand-in-hand with other negative consequences. Nagging means failure and a lack of trust.

In other families nagging is a token of affection and attention. Nagging means your track record of successes has earned the time, care, mentoring, and trust of the authority figures. To not be nagged would be a depressing insult. It would mean you are not trusted with chores and responsibilities, and doomed to be treated like an invisible or even shunned child until you get your act together.

So please keep your social antennas up during distance learning group work. Be sensitive to whether classmates are put off by being prompted and reminded, or respond positively to that attention.

Inventing Stress

distance learning tips This is a low-stress math class. Please do not needlessly invent stress.

I do not ask you to believe me. Here are the words of a Winter term student named Micki:

There weren't any harsh or unreasonable deadlines for turn in assignments. And [ungraded midterms meant] I didn't have to worry about taking tests periodically that would have a negative effect our grades.

(If you're someone who experiences test taking apprehension, similar to myself, it can be a blow to the ego and effect momentum going forward when you've done A level work and get hit with a negative mark on a test.)

Using the practice tests was incredibly reassuring to know you aren't going to be surprised by any of the material on the day of the exam. When the time came for our two major exams, I was very confident.

Another thing that may be worth mentioning is that we were in complete control along the way, as we used the tools and resources provided, such as Accomplishment stars.

Once class gets going, you will soon see that most math errors come from trying to make a problem needlessly difficult. A lot of good studying is seeing and practicing how to keep things simple.

Please do not make the same mistake for the overall class! The resources you are given are extensive, but well-organized. See how they are simple. See how they flow. Relax into the current.

Distance Learning Dangers

I really hate this darn machine,
I wish that they would sell it.
It never does quite what I want,
But only what I tell it.

- Poem on my grandfather's fridge

Thanks go to Alla Burton for helping point out these distance learning pitfalls.

When a class is different, the pitfalls are different.

Don't Skip Videos

It is really important to watch the class videos when distance learning. Even if you attend the Zoom class meetings, there will still be times when watching a video is the right thing to do.

Both the the class website and the textbook have many helpful videos.

Don't Plan to Cram

photo of cramming before a test

Comprehensive review works terribly in a distance learning class. Rreview days work great for in-person lecture classes. Everyone can calmly take turns asking their last questions about problems from the homework and practice final. But review days are less helpful as a Zoom meeting.

So do not expect the end of term review days to be as helpful as usual.

During the term try harder than usual to keep up in class.

The review assignments and the practice tests that your instructor suggests are extra important when distance learning. They are for exercise, not cramming. Use them to keep fresh in your mind the topics from early in the term that can slip away during the weeks until the final exam.

The final exam will not have surprises. It will look like the practice finals. Be prepared so you can enjoy approaching it confidently, as a chance to show off.

Don't Forget the Hidden Curriculum

Dealing with the hidden curriculum is worse when distance learning. Be extra familiar with school resources. Schedule extra time to deal with forms and academic advising.


Homework

Levels of Understanding

Homework is the foundation of civilization.
    - Tom Foster

Thanks go to Cathy Miner for this insight.

With math there are six levels of understanding.

  1. If you do not know the topic's jargon or procedures, you have trouble following what someone says.
  2. Understanding the jargon, you can follow what an instructor does on the board and learn about procedures.
  3. Understanding the procedures, you can do open-book work that mimics example problems.
  4. Having memorized the procedures, you can do familiar problems using only quick reference notes (no example problems).
  5. By more deeply understanding the procedures, you can figure out unfamiliar problems in new applications, perhaps even with a time limit.
  6. With extensive practice, you master the topic and can do closed-book work with the pressure of a strict time limit.

It is completely normal to have different levels of math understanding for different math topics and subtopics. For example, a person might be able to do arithmetic with decimals closed-book, but for arithmetic for fractions need to work open-book with an example problem to look at.

It is also completely normal to not know what level you are at for a topic until you try open-book and closed-book problems. Our brains trick us!

We have all experienced leaving a math class feeling like everything makes sense, but then when we look at homework it feels like our mind went blank and we have no idea where to start.

We have all experienced feeling like a certain topic would always be a bothersome struggle, but after learning the procedures well that type of problem becomes quick and fun.

We have all experienced mastering a math topic early in a term, then being surprised by how much we need to relearn it at the end of the term before a final exam.

In other words, our brains will lie to us about how well we understand a topic now and also in the future.

This means that we cannot plan how much time a homework assignment will take until we actually get started.

IHOP appertizer sampler

So an important part of a homework assignment is the appetizer course. Soon after learning some new math, "sample" the homework for about twenty minutes. Attempt a few problems open-book while looking at example problems. If you get stuck on any problem, skip it while making a note that you are at the second level of understanding for that problem. If you can answer it, try a similar problem without using an example problem: perhaps you are at the third level of understanding for that problem.

When you are done, you can better plan how much time you will need for that assignment, and how to pace yourself.

Please do not worry if a new topic is difficult. New things are often difficult. It is normal to have trouble with a new topic for a couple days. A day or two of struggle is not a danger sign. But if a math topic remains difficult after a three days then make sure to get help promptly, so you do not fall behind. Visit office hours, a study session, or a homework group. Use a teacher, tutoring, or helpful friend.

Math and Memory

Sometimes you will never know the value of a moment, until it becomes a memory.
    - Dr. Seuss

Sanjay Sarma's book Grasp discusses memory and learning in much more detail.

The science of learning has grown a lot in recent decades. What happens neurologically and cognitively as we learn?

People used to believe repetition helped form new memories. But we have all experienced when this is not true. It usually does not work, when we meet someone, to memorize their name by repeating the name in our heads. The name sticks short-term, but not long-term.

People used to believe practicing very specific skills best formed new memories. But experiments have proved this is not efficient. Golfers who devote a long session to rehearsing a specific swing improve less than those who frequently switch clubs and targets. The first group gains more short-term, but not long-term.

What has the science of learning taught us about long-term learning?

We can actually observe the strength of long-term memories. Strong memories form with long-term potentiation: additional synapses, larger neurons, and more receptors on each neuron.

We can actually observe curiosity in the brain, with dopamine levels in the hippocampus. We can watch curiosity cause long-term potentiation.

The power of studying step-by-step answers took researchers by surprise. For some people, it is a lot more helpful than doing their own math problems!

Potentiation also happens when we do construction. We remember facts better by building around them an acronym, saying, song, or story.

Construction works because potentiation requires retrieving with focus. Memories move from short-term to long-term when we retrieve them while they are partly faded and only dimly seen in a fog of contextual memories. When retrieval needs a bit of effort, potentiation happens.

This explains how constructing that acronym, saying, song, or story really works a "memory gimmick". It provides that fog of contextual memories, so that later recalling the partly forgotten fact will cause potentiation.

(This is also why even though it feels good to repeat a specific skill you are learning—such as that golfer rehearsing the exact same swing, or a math student repeatedly doing computer-generated problems that are the same except for having different numbers in the same places—those low-focus and low-effort retrievals contribute very little to long-term memory.)

Reflection also causes focused retrieval. Awareness of how deeply you have learned something is another way we construct a fog of contextual memories.

Another important kind of construction is seeing patterns and connections. Having an insight that makes us go aha! is a personally significant mental construction.

One guess about why studing step-by-step answers is so powerful comes from cognitive load theory, that studies how people can mentally juggle about seven chunks of thought at the same time. Focusing on steps and procedures requires only a few chunks, because we need not also focus on the specific numbers in the problem, which buttons to press on a calculator, or our worries about getting an answer correct. That frees up more chunks for seeing patterns, being curious, and making aha! connections. Thus even though studying step-by-step answers does not itself involve focused retrieval of memories, it makes mental space for side thoughts that do.

Finally, researches have studied repetition. Repetition does not create potentiation, but increases existing potentiation. Repetition does not create long-term memories, but can deepen them.

Types of Homework

I have not failed. I've just found 10,000 ways that won't work.
    - Thomas Edison

dog eating homework

So, what is the best way to do math homework?

Can we use different types of homework to maximize potentiation?

1. Skim a topic before studying it deeply. Try to write at least one question you have about the topic. Allow a little curiosity!

2. After studying the topic (by yourself or in a group), go back and read our online notes a second time to study each step-by-step example problem twice. First, read it. Then try to solve the problem yourself while covering the next line of the solution. (Either scroll down very carefully or hold a piece of paper over the screen to block the lower text.)

textbook example problem symbol If you use our textbook, it is another great source of example problems. Every example problem in the book is written step-by-step, and has several videos of different people solving it.

3. Next, invent some of your own homework problems. If you cannot answer them yet, save them for later. They are still worthwhile constructions.

(Much later on, another important construction will be going through your notes before a practice test to summarize them into quick reference notes.)

4. Move on to homework excercises. Do not repeat the exact same type of problem a lot. Switch types often. Remember that when learning something new, you are doing it right when you feel like your memories have become partly faded and only dimly seen in a fog of context.

When using our textbook, the odd-numbered textbook problems have an answer key. In the physical book, these answers are in the back. With the e-book, find them by clicking on "Supplements" on the right side of the screen, and then picking "Selective Answers".

Selective Answers

5. Of course you will check your answers so you do not practice bad habits. At the same time, build the habit of asking yourself if each answer you get is reasonable. This is important reflection.

6. As you do homework, make your notes more complete. Check that changes of topic and subtopic have a very visible header. Check that definitions stand out. Notice where you are missing an example problem. Notice where you can improve an explanation. Include your favorite homework problems as extra example problems. Solve the homework problems you invented, if you could not earlier.

Your notes should make homework the end point of a chain that links the group learning during class to your personal practice. During class your instructor provided the energy and momentum. Use your notes to carry some of that into your personal practice.

Your notes should make homework the beginning of a chain that links your personal practice to your final exam preparation. Your notes should become a customized resource with everything you need to get ready for the final exam.

7. random problems Eventually use repetition with random problems that are the same except for having the numbers change. On this website those problems have an answer key. Get as much practice as you need. If you are an LCC student, those are the problems that will appear on your tests!

8. At least once, try that type of problem closed-book, even if no one will ever ask you to do so. Nothing about this website will require the sixth and highest level of understanding for any math topic. But you might reach that for many topics, and should recognize and celebrate it! Awareness of how deeply you have learned something is also helpful reflection.

Icing on a Gingerbread House 9. Finally, as "icing on the cake", explain an example problem you invent to someone else. Simply inventing a new problem and finding the words to explain it out loud involves most of the above keys to potentiation: studying a step-by-step example, constructing an explanation, reflecting on what to say, and repeating your plan to yourself in preparation, and eventually focused retrieving while you feel on stage because you are explaining rehearsed ideas out loud. Talking to a pet or stuffed animal is okay. It is better is to teach a real person, who can ask questions, and whose curiousity you will feel an obligation to engage. Even more potentiation happens as you deal with their requests to clarify, paraphrase, elaborate, or extend ideas. The saying "To teach is to learn twice" is observably true in our brains!

turn in problems 10. If it fits your schedule, turning in written solutions for an instructor to grade can be helpful—especially if you are working by yourself without the benefit of class meetings where students can explain invented example problems to each other under an instructor's guidance and encouragement. Doing written assignments involves less potentiation than teaching, but can still help. Assessment also helps you and the instructor know your current levels of understanding for the topics.

Does ten steps of homework seem like a lot?

Is doing ten types of homework a new thing for you?

Try it!

At the beginning it might seem silly, and you may find that being careful about doing each step slows you down at first. But soon you will notice that you spend less time doing homework than before. By working the way a learning brain naturally works, you are more efficient.

Practice Quizzes and Tests

gymnasium The ancient Greeks called their training facilities gymnasia. These buildings were places for athletic practice and be instruction, and also gatherings for socializing about intellectual pursuits.

Both the athletic activities and the socializing respected that mental foritude and flexibility went hand-in-hand with physical training. The building usually bordered outdoor lawns or courtyards, where most of the physical activity happened.

The Greek word gymnasia literally means "naked school". Historically this was literal. The ancient Greeks practiced and competed nude for two reasons. First, they realized that training happened best when athletes were honest about their abilities and shortcomings. An important part of training is identifying and monitoring our strengths and weaknesses without feeling needless embarassment or shame. Second, the ancient Greeks believed a well-deveoped body and mind became a tribute to their dieties worthy of display.

Roper's Gymnasium in PhiladelphiaOur math training should share these values. Taking a test is both a physical and mental activity. Effective training requires awareness and openness about strengths and weaknesses. Feeling embarassment or shame about today's performance is inappropriately counterproductive. (But please wear clothes to class.)

Koerner Hall in Toronto A high school math class is a bit like becoming a concert pianist. No one really sees or cares about your hours of practice. They watch you as you get up on stage at the end. You demonstrate your ability, by yourself, under pressure.

The high school test atmosphere is individualistic. You feel like you have crossed a milestone, proved yourself, and earned an accomplishment for your resume.

Olympic torch ceremony In graduate school, more assessment is oral exams. Instead of creating written answers privately, you stand at the chalkboard while your instructors ask you to do work similar to the practice tests. You do fewer problems, but are expected to be smoother.

The graduate school test atmosphere is individualistic. Sometimes this is a social gathering in which a group of students take turns demonstrating their mastery and celebrate afterwards. You feel like a torch has been passed on.

Our math training should share these values. A quiz or test is an opportunity to prove what you have learned, and to be initiated into a community of successful learners.

Continuing with our history commentary, the similar buildings in Asian countries are called a dojo (Japan), dojang (Korea), wugan (China), or Akhara (India).

Imperial Civil Service Examination in Song Dynasty The buildings also blend physical and mental training. They are often larger complexes, with dormitories and guest rooms. Compared to our math work, these Asian terms might place too little emphasis on vulnerability, and too much emphasis on formality, cleanliness, hospitality, honor, and competitive ranking.

Yet the Asian training mindset can remind us to seldom start with a goal of finishing completely.

tai chi in a park Instead, do the first few problems. Try these again and again on different versions. Work on good form. Enjoy affirming your mastery!

Then add another one or two problems. Again, practice your form with a short to-do list.

Eventually you will have added every problem, and have gained mastery over the entire activity. But do not rush it.

Practice mindfulness. You are working on good form by repeating a task with attentiveness to detail. Acknowledge the frustrations and the joys while not focusing on them.

Your actual assessment will look just like these practice tests—almost. For some problems, instead of creating answers you will be required to analyze already complete work to explain steps or find errors.


Group Work

It is all right to hold a conversation but you should let go of it now and then.
    - Richard Armour

Study Sessions

Instead of quiet office hours we have chatty study sessions!

These can serve several different purposes.

You do not need to bring questions to study sessions. It can be nice to simply study quietly while knowing that help is available from the instructor or classmates. That help can look like a few things:

Study Groups

Our math division at LaneCC has two study rooms (one upstairs, and one downstairs) with a big table and a nice chalkboard that students can reserve by going to the math office.

Although there is no "right way" to do work in groups, there is a most efficient way. If you were to watch math graduate students working in a group, their routine is not very social, but it helps learning happen quickly and deeply. Most most work done by each student solo (but with company) intermingled with short discussions about the trickiest (and most interesting) parts of the problems.

The graduate students begin by doing problems at a table. They do not talk. They work independently until someone gets stuck.

homework in group picture one

When a student gets stuck, he or she moves from the table to the chalkboard and writes the steps to the difficult problem that he or she has done so far. The other students pay attention. If that problem is new to them they begin to work on it at the table. The student at the board waits for a response.

homework in group picture two

Soon a second student will get up and go to the board. This new student will help by giving a hint about the next step, or by pointing out where a mistake was made. The first student may not agree. The two students may debate whether a suggestions is useful. Students still at the table also offer comments.

homework in group picture three

Eventually the problem is solved. The students copy the correct answer to that difficult problem from the chalkboard. Someone erases the chalkboard. All the students go back to working by themselves at the table.

homework in group picture one

As I mentioned before, this routine is not very social. The students avoid talking off-topic until all the work is completed. (As math graduate students they have lots of it to do.) When they do discuss a problem, it is either a brief suggestion that offers enough help, or a discussion that sounds almost like an argument. Most problems are done independently.

So you may think this routine sounds like it is not much fun. In part, that is true! The group would have more fun if it was more social. But those math graduate students find learning math to be fun, even if socializing is postponed until later.

Math Club Roles

No relationship was found between gains in content knowledge and study group use...We conclude that students require guidance in the successful use of study groups. Instructors can help students maximize study group success by making students aware of potential group composition problems, helping students choose group members who are compatible, and providing students materials on which to focus their study efforts.
    - Stephen M. Rybczynski and Elisabeth E. Schussler

This is contrived, but it works.

We can pay attention to the social dynamics within a productive conversation. What naturally happens? Then we formalize those features that keep a conversation productive into roles we can use intentionally in our own group work.

Imagine a Throne Room

the monarch For a moment, imagine a movie scene where a king or queen is holding court. People are coming for this wise monarch's help resolving problems. Currently two merchants are before the throne. They wish to work together, but their contract was poorly worded and they disagree about its obligations.

Being wise, the monarch is not making decrees, but using proper counseling techniques to help people more deeply understand their own needs, ideas, plans, and goals. The monarch speaks as little as possible. Like an orchestra conductor, he or she directs the flow conversation. "And what do you think of that idea?" "I think we need more information before deciding that." "Remember, you both want a consensus." "Enough brainstorming, let's make a decision." The monarch's leadership keeps the agenda clear. Everyone is on the same page, trusts they are not wasting their time, and feels more comfortable.

the princess Next to the big throne is a smaller throne with a young child: the prince or princess, who is too little to understand legal matters of merchant contracts or property lines. But this young royal is not passive. Her or she is already skilled at observing group dynamics, and works with the monarch to set the mood and keep the conversation going, by offering coveted encouragement or praise.

The monarch maintains an attitude of amused mastery: caring, and genuinely wanting what is best for people—but always calm and a bit dry. He or she has seen these issues many times before, and never gets surprised, invested, or emotional while being supportive. In contrast, the prince or princess gets clearly excited. "Well said!" "I like that idea." "Now we're getting somewhere!" "You finally spoke, and did great!"

the scribe On the other side of the throne is a scribe, writing what happens. Of course the scribe records a public report: what new business deal will the merchants agree on? But the scribe also writes about the process. When did the discussion stall, or move quickly towards a resolution? Who spoke the most and least? Which ideas these these two merchants get excited about, which might be important the next time they appear before the monarch? What broadly general policies or laws should the monarch and court advisors privately discuss after the public court time concludes, to keep the kingdom running as smoothly as possible?

the jester Lounging nearby is the court jester. He alone is expected to be clever. And he alone is permitted (rarely!) to be critical and make tangential comments—only to quiet someone who is dominating the conversation too much. "Your first two sentences were genius, but you should have quit while you were ahead." "Hush, only musicians are allowed to interrupt!" "That idea reminds me of a time I was really bored." "That plan might work if you were as capable as you think you are." "Bah! You should first reply to what she actually said before you share you own new idea." "Can you paraphrase that idea with less hot air?" "I have neither the time nor the crayons to explain this to you." The jester's roasts are well-received. Everyone knows he is doing his job to correct someone else's rude behavior, so the monarch need not stoop to condemnation.

the sage Finally, a pensive sage considers which thoughts are deep or shallow. Do some ideas need more clarity, details, or consensus? Have we really resolved the problem, or are we fooling ourselves? Would this solution still work in a slightly different situation? Everyone knows the monarch is wise, but the monarch's attention is focused on the flow of conversation. The sage is also wise, and has the luxury of focusing all of his or her mental energy on the ideas being shared.

Math Club Homework Groups

I encourage Math Club participants to form homework groups of five or six people.

Each group member uses one of the above five roles. If the group has more than five people, the extra people get to take a break from an assigned role.

Rotate roles each time you meet to do homework. The monarch becomes the prince/princess, the prince/princess becomes the scribe, the scribe becomes the jester, the jester becomes the sage, and the sage becomes the monarch.

While doing homework, everyone except the monarch is responsible for asking a new question about that topic, and contributing towards two answers. No slackers! The monarch alone has freedom from discussing the actual math, because of the burden of conducting the orchestra.

At the end of the homework sessions, the scribe turns in a written report that very briefly answers seven questions:

  1. Which math topic did the group discuss and work on?
  2. How did the group do?
  3. Does the group have unanswered questions?
  4. Does the group have answers or discussions to share with the entire class?
  5. Are any group members especially strong or weak with any of the five roles?
  6. Are any group members acting too quiet or dominant?
  7. Is the group wanting to stay together or wanting to shuffle people with other groups?

No one is being graded for doing group work this way. These roles are merely hokey suggestions.

But these roles are well-proven suggestions. They provide structure. They exaggerate what works in successful business meetings.

It can be really awkward to do homework with people you have never met before. So admit it is awkward, embrace some hokey behavior, and get started! You will be pleased by how quickly these roles move everyone over the awkwardness into productive math discussions.

These conversational roles come from the group dynamic studies of Karl Bailey and Peter Collett.


Writing Math

Writing Step-By-Step Answers

It's not that I'm so smart, it's just that I stay with problems longer.
    - Albert Einstein

What qualities help make writing step-by-step answers helpful to the student and instructor?

To add clarity we'll consider a practical example: a PDF file of handwritten step-by-step answers for an old Math 20 midterm.

(If PDF files do not work for you, you may also click on the images below to see larger versions. You may need to use your web browser's zoom, often by holding down the Ctrl key and tapping the + key).

sample page one   sample page one   sample page one   sample page two

1. Paper is ruled with lines tall enough for factions. Work is written using pencil in a reasonable size.

Some paper has such closely spaced lines that each fraction must be written spread vertically on two lines. This needlessly invites confusion about which lines start a new step.

Writing too big wastes paper. Writing too tiny annoys the person grading your work.

Use a pencil so that you can erase to aid formatting. For example, if you write fraction addition too compactly you would want to erase a bit so you can create room for the little numbers that show how you are multiplying each fraction. (Only erase for reaons of arranging your work on the page. Do not erase actual math errors—cross those out neatly instead. It is important to be aware of which types of problems are difficult and which types of careless mistakes happen most often. Do not erase to hide this information!)

In the sample Midterm step-by-step answers, I used fractions in five of the problems. In all of these problems the fractions are written legibly and take up about as much room as would a whole number.

In the sample Midterm step-by-step answers, I switch to writing every other line when the equations are full of fractions. Problem #10 would be less legible if written on only two lines of paper.

2. Fractions are written vertically, not diagonally.

Unfortunately, when writing text on a website it often works best to write fractions diaglonally like ab. But this makes fraction canceling and arithmetic less visually intuitive. Since you are writing on paper instead of typing, all of your fractions should be nicely vertical.

In the sample Midterm step-by-step answers, I always write fractions vertically.

3. Dots for multiplication and decimal points are not confusing.

Most students in a "learning math skills" class use · instead of × to write multiplication. This is a good habit to prepare for later algebra classes.

However, using · in a class that uses decimals frequently can be tricky. Make sure decimals are at the bottom of the line and multiplication dots are higher. Use horizontal spacing of work to increase clarity when decimals are multiplied. In some problems it may even be necessary to take the time to draw multiplication dots larger than decimal dots.

4. Steps are clear and small enough to answer "What was I thinking here?"

The purpose of step-by-step work is to create clarity about where errors happen. Hopefully you will notice the errors as you do the problem, and fix them. If not then whomever is grading your work still gets the benefit of knowing exactly where you were careless or confused.

5. Proper math grammar is used when moving from step to step, and when canceling.

When solving problems you have two big tools. You can do the same thing to the top and bottom of a fraction (or ratio). You can do the same thing to both sides of an equation.

There are correct and incorrect ways to write reducing or un-reducing a fraction. See "Writing Un-reducing" and "Writing Reducing" in the fractions lecture notes.

It is a good habit to use distinct cross-out lines each time fraction canceling happens in the problem. If all the cross-out lines are single diagonal lines going the same direction then when reviewing the problem it is very slow to double-check how you did more than one bit of canceling. Vary how you write cross-out lines: single versus doube, diagonal right versus diagonal left, straight versus wavy.

In the sample Midterm step-by-step answers, I had two bits of canceling in one step within problem #5. I wrote my cross-out lines diagonally but going opposite directions.

6. Rates that should have labels do have labels. Proportions have equal signs.

These are two aspects of proper math grammar that are significant enough to deserve extra attention.

Labeling rates allows double-checking that canceling or cross-multiplication is legal. Math 20 includes many "trick questions" in which the initially provided measurement units do not match properly, and must be adjusted before a proportion can be solved.

Including an equal sign in the middle of a proportion is important, especially if more math happens to either side.

7. There are enough equal signs for flow. Equal signs really mean everything they connect is equal.

A single line can include more than one equation if all items are equal. For example, there is nothing wrong with writing

y = 7 + 8 + 9 = 15 + 9 = 24.

However, it is wrong to chain together equal signs when all items are not equal. This error most commonly happens when a new step is begun not with a new line but with an addition operation. For example, the previous addition might be sloppily and incorrectly written as

y = 7 + 8 = 15 + 9 = 24.

My colleague Eric Hogle called this the "read it over the phone test". If you pretend to read your work to someone over the phone you can more easily notice when you are trying to start a new step in the middle of an equation.

8. Problems are clearly numbered, spaced apart sufficiently, and easy to find.

We do want to avoid wasting paper. But if we cannot clearly find and read each problem the entire assignment is somewhat of a waste.

In the sample Midterm step-by-step answers, I could have started writing problems #2 or #14 one line higher. The work would have fit. But it would be slightly less legible and would not have saved any paper.

9. Enough of the original problem is included to allow double-checking for copying errors.

For many students the most common careless error is copying the original problem incorrectly. This can happen in your head, so do not jump write to solving the problem without writing enough of the original problem. A key example of this criterion is writing a percent sentence (or extracting which values are "part" and "whole") before changing it into an equation.

In the sample Midterm step-by-step answers, I made sure to write the original, unestimated amount for problem #1. I also wrote the task for problem #2 to aid later double-checking that I rounded correctly.

10. Appropriate parts of the problem line up vertically. Equations are solved with the Vertical Format.

Double-checking work (or grading it for partial credit) is much more slow and succeptible to errors if steps do not line up appropriately.

In the sample Midterm step-by-step answers, I lined up my equal symbols and letters for problems #7, #8, #15, and #16. Also, problem #17 involved an expression with four terms and I kept each term in its own horizontal column while simplifying.

11. Work written horizontally to emphasize terms and to leave room for fraction reducing/unreducing.

Leave more room around + and − symbols than × and ÷ symbols. This helps your eye and brain naturally see terms, and prioritize multiplication and division.

When adding or subtracting fractions remember to leave room before the + or − symbol and after the second fraction for those little numbers that show how you are multiplying each fraction.

In the sample Midterm step-by-step answers, I put a lot of space after the fractions in problems #9 and #10 before writing an equal symbol. I know I will be reducing them, and leave room for writing how I divide the numerator and denominator.

12. "Off on a tangent" work is to one side, set apart with a brace or cloud, and points to where it fits in.

Fraction arithmetic and long division are the most common "off on a tangent" work. When solving an equation, do not try to squeeze fraction arithmetic or long division into the Vertical Format of solving the equation. Do that work off to the side where it can be written large enough and neatly enough to make double-checking easy.

In the sample Midterm step-by-step answers, I had "off on a tangent" work in a cloud as part of problems #7, #8, #12, and #15. In each case I drew an arrow to show where that work related to the main problem.

13. Abbreviations for unit labels are proper. (meters = m, miles = mi, minutes = min, etc.)

This is polite. If you use non-standard abbreviations it makes extra mental work for the person reading your paper, whether a study partner trying to work with you or an instructor grading a test.

14. The answer is easy to find in a box (or otherwise made distinct).

Whomever is grading your work for partial credit will appreciate this small politeness.

In the sample Midterm step-by-step answers, I put a box around my answers.

15. Answers that should have labels are correctly labeled.

Do not be forgetful or sloppy if the problem is a word problem or another type whose answer needs a label. Be professional.

16. Fraction answers are reduced.

I am not sure who invented this rule for students learning math skills. We might not like it. But reducing fraction answers is required.

To conclude, here are two examples of student papers with nicely written step-by-step answers.

sample page one   sample page two

Note Taking

He listens well who takes notes.
    - Dante

The best way to waste your life, is by taking notes. The easiest way to avoid living is to just watch.
    - Chuck Palahniuk

Four Sources to Merge

After a math lecture you have four sources of information about the material:

Most students find it helpful, as soon as possible after each class, to combine these sources to make their notes "completed". Add to what you wrote during class your thoughts you did not have time to write. Then augment your notes with helpful things you notice when looking at the textbook pages and the instructor's public lecture notes.

Making notes "completed" is a great aid to learning the math topics. It is especially important to try this early in the term. Early practice will help you become quicker at "completing" your notes, saving you time later in the term.

Not only does making notes "completed" help you review and better learn the math topics, but when it is time to study for a test all four types of information are now optimally accessible in one place.

Someone who reads "completed" notes should be easily able to see how you processed the notes after class ended. Make your after-class additions distinct!

Four Formatting Characteristics

Equally important for creating readable and helpful notes is the formatting. Notice how the lecture notes on this website are examples of good note taking formatting.

Your in-class notes should also have these four characteristics. (Then your "completed" notes automatically will.) It makes a big difference when studying!

How can we include those four characteristics when using pencil and paper?

Try Columns

Many students like using two or three columns. Let's look at examples of each. You are not required to use columns as your method of including those four characteristics of note formatting. The following examples are only suggestions.

To use two columns, simply reserve the right-hand margin for "completing" the notes you write in class. This means you need to find some way to keep narrative and examples from blurring. You also need to label when a topic changes, and make definitions stand out.

Here is an example.

two column example

Some students like using three columns. This method puts narrative in one column and examples in the second column. This helps a student realize when a topic is missing an example. The third column is for "completing" the notes. Topic changes and definitions still need to be clearly marked.

Here is an example.

three column example

To summarize, you have two tasks when creating quality notes. First, be sure to "complete" your notes by spending time with them after class, adding whatever is needed to make them a maximally useful aid for studying in that math class (and perhaps future math classes too). Second, in class write nicely formatted notes using any system that includes those four formatting characteristics.

Here are three great examples of student notes. As before, click on the small version to go to the full size version.

sample page one   sample page two   sample page three

Calculator Use

Why?

Computer science is no more about computers than astronomy is about telescopes.
    - Edsger Dijkstra

They are useless. They can only give you answers.
    - Pablo Picasso, about the calculating machines of his day

demotivational poster

Enough inspiring life advice! This is a study skills webpage, not a motivational poster.

Let's talk about using a calculator as part of a math class.

Using a calculator when learning foundational skills can hinder developing a conceptual understanding of math topics. The concepts of ratio, proportion, percent, and unit conversion are closely linked to foundational concepts about fractions and decimals. Those concepts should be taught with friendly numbers and no calculators. Students should be learning that in those types of problems the numbers are as much structures as values.

However, after a foundational skill is learned, it should be practiced with realistic and messy numbers. A calculator is needed.

Just remember to keep thinking of the numbers as part of a unified concept dealing with structure and meaning. Do not diminish your math ability into a collection of procedures.

How?

Freedom is the freedom to say that two plus two make four. If that is granted, all else follows.
    - George Orwell

When Numbers are Too Big

What can we do if a problem involves numbers too big to fit into the calculator?

Most calculators cannot handle a fourteen-digit number. How can we answer the following question?

In September 2019, the U. S. national debt is about $22,711,880,000,000. The U. S. population at that time is about 329,754,250 people. How much was each person's share of the national debt?

We can round both numbers to the same place value. For this problem, let's use millions.

In September 2019, the U. S. national debt is about $22,711,880 million. The U. S. population at that time is about 330 million people. How much was each person's share of the national debt?

Now the word "million" can be treated as a label that does not actually go into the calculator.

$22,711,880 ÷ 330 ≈ $69,824 per person

Previous Answer Key

The previous answer key is very useful. Please take a moment to make sure you know how to use the version on your calculator.

In September 2019, the national debt per person in Japan was about $99,800. Express this as a percentage of the U. S. national debt per person.

We want to do $99,800 ÷ $68,824 without having to retype the $68,824.

Try it with your previous answer key.

$99,800 ÷ previous answer key ≈ 1.45 = 145%

(Older calculators only have M+ and M- keys. These can be used to mimic the previous answer key in a slower manner. But most Math 20 students find it worth the small expense to get a calculator with a previous answer key.)

Exponent Key

The exponent key is used in two of our formulas about saving for retirement. Please take a moment to make sure you know how to use the version on your calculator. Try 23 = 8.

Notice that on some calculators this key looks like yx and on others it looks like the caret symbol ^. But the display shows the caret symbol for both kinds of calculators!

(There is also a calculator key labeled EXP. This is for Scientific Notation. Do not confuse it with exponents!)

Pi Key

The pi key is used in Math 20 for geometry with circles in Chapter 9. Unlike the other keys, it does not hook two numbers together. Instead, it stands for one number.

Using the pi key simply saves time typing π = 3.14159265358979...

Please take a moment to make sure you know how to use the version on your calculator. Try 1 × π = 3.14159265358979...

Percent Key

The percent key is never used. Ignore it!

Recall that percent sentences appear three different patterns:

The percent key works differently in each case! It is much simpler and safer to always use decimals with the calculator. After all, it is so easy to change between percent format and decimal format by scotting the decimal point twice with RIP LOP.

Square Root Key

The square root key is wonderful. Math students today do not need to learn the tediously lengthy ways that people once used to estimate square roots to a decent number of decimal places.

On some calculators this key automatically does "equals" and shows the answer. On other calculators you still need to press "equals" or "enter" to see the answer.

You might never use this key. But you should read about the simplest of many square root algorithms just to appreciate what people needed to do before calculators were invented!


Computer Use

Free or Low Cost Internet

Comcast

The program Comcast Internet Essentials is free for 60 days.

To qualify, students must be eligible for public assistance programs (National School Lunch Program, housing assistance, Medicaid, SNAP, SSI, etc.), not have subscribed to Comcast Internet within the last 90 days, and not have outstanding debt to Comcast that is less than one year old.

You can check here to see if you live in an area where Comcast Internet Service is available.

Spectrum

The program Spectrum Internet Essentials is also free for 60 days. To sign up, students must call (844) 488-8395. (Current hold times may be up to one hour.)

To qualify, students must affirm they are a K-12 or college student, eligible for public assistance programs (National School Lunch Program, housing assistance, Medicaid, SNAP, SSI, etc.), not have subscribed to Spectrum Internet within the last 30 days, and not have outstanding debt to Spectrum.

You can check here to see if you live in an area where Spectrum Internet Service is available. The zip code 97424 has some serviceable addresses. Few addresses within the zip codes 97477, 97405, 97404, or 97448 are serviceable.

AT&T

AT&T is also offering help to its customers. Their website describes the details.

OPUC Lifeline

The Oregon Public Utility Commission Lifeline offers a $12.75 per month discount off many types of internet service or a free phone with unlimited voice and a monthly 3G data plan.

To qualify, students must already have internet service through a participating company (see list on the online application), not have others at their address already participating in OPUC Lifeline, and already be receiving SNAP, SSI, or Medicaid.

Polite E-mail

Plain Text Please

Please send e-mail in plain text mode. This can avoid all sorts of problems.

screen shot of turning on plain text mode

In the old days an e-mail sent using HTML mode could contain viruses. That threat is much less with modern browsers and anti-virus software.

But these days people use e-mail to send images to each other all the time. Have you ever received an e-mail that was difficult to read because an embedded image was too wide and messed up the scroll bars? Or multiple embedded tall images made it awkward to scroll down and find the text in the message? Using plain text mode avoids such awkwardness.

Using plain text mode is also a good habit for being accessible and professional in the workplace. The software that translates text into braille or speech will appreciate plain text. Your future co-workers will appreciate easy to read messages.

Moodle to E-mail

Moodle includes a way to send messages. Unfortunately, this feature can cause a problem when faculty or students who are not used to checking their Moodle message inbox never see those messages.

There are two ways to avoid this problem.

In Moodle, go to your settings at the top of the main dashboard, and then pick "Messages".

screen shot of Moodle screen shot of Moodle

Two of the options in the message options offer different solutions.

screen shot of Moodle

The red arrow allows you to you restrict incoming messages to your Moodle contacts. You probably have no Moodle contacts. So this effectively allows you to turn off Moodle messages and ignore it forever.

The green arrow causes Moodle to send your LCC e-mail account a copy of every message. Then you will know when someone does send you a Moodle message and can deal with it appropriately.

Zoom

Versions

zoom logo

Zoom has a getting started guide for computer, iOS, and Android.

Which version do you want to use?

Zoom has not only video chat, but a text chat pane as well.

Most instructors will take attendance during the Zoom meeting. They will tell you when to say hi in text chat. Then the instructor can save the chat pane as a file for their attendance record.

The computer version has an important advantage. The bigger screen space allows you to keep the chat pane always open, as a sidebar on the right edge of the screen. If your instructor is using Zoom in a way that makes text chat important, you will want to be on a computer if possible.

The computer version also allows you to change the background behind your head. This is fun, but not important. If you want to find a nice nature photos for a background, try visiting my favorite Reddit.

Using Zoom on a tablet is great if the text chat pane is barely used. For example, if the chat pane is only used for taking attendance, a tablet might be the most comfortable. The controls are the most intuitive, the screen is large enough, and the camera and microphone are built in.

Using Zoom on a phone is almost like a tablet. The phone has the advantage of being able to connect with a phone call instead of wifi. But the smaller screen might make it hard to see how the instructor is writing on the board, using science equipment, demonstrating art techniques, etc..

With both phone and tablet, you might need to go to the participant list first in order to get to the chat pane. See the picture below of the bottom of the phone/tablet participant list.

The phone and tablet version of Zoom uses swiping right to switch views. This is good! However, by default, swiping left also does something, and it is annoying to have happen accidentally. It is called "Safe Driving Mode". You can turn this off in settings.

zoom phone or tablet screenshot

With both phone and tablet, use the device's normal "back" button to get to settings. On the computer, when you open either audio or video settings with the little arrows beside those icons, you will actually open all the settings.

Good Habits

Computer users can hold down the space bar or Alt-A to temporarily unmute. Try using that. Most of us have other people in the home, open windows with traffic noise, papers shuffling, phones beeping, noisy keyboards, etc. All those little noises add up. There can also be feedback if your microphone picks up other participants' audio.

You might be able to bind Alt-A to an extra button on your mouse. When using space bar to temporarily unmute, beware! If you use chat, click some other part of the Zoom interface after using chat. Otherwise your next space bar press will type a space in chat, instead of allowing you to speak.

During a disucssion identify yourself more often than you are used to. Yes, everyone can see the name you pick. But some people might be looking away from their screen, focusing on what is happening on a shared screen, getting a cup of tea, etc. And people using a tiny phone screen will have trouble reading that tiny name. Also, compared to an in-person discussion it takes longer to associate names with voices. So for a longer time than normally, start your questions or comments with helpful transition phrases such as "Adam here,..." or "This is Adam..." or "Adam again..."

Interrupt carefully. Compared to an in-person discussion it is harder to see the facial cues and body language that allow smooth interruptions. If you are hesitant to interrupt, use chat to ask or say something. You can also use the "raise hand" feature.

You can use chat to sent a message privately to another student. If someone has a quick question that is not about the math topic, then it can be helpful to send a private message. Students should help inform each other about Zoom settings, homework due dates, study groups, etc. But do not use private chat to talk about math topics. It never happens that only one student needs something shown on the whiteboard again, repeated aloud another time, or explained a second way with different words. If someone wants that to happen, actually many people want that to happen. It should be done where everyone can see.

Share at a leisurely pace. Some people will have a 2 or 3 second delay before receiving what you say. If you rush an explanation then people will miss parts.

Share like an emcee. In a classroom, if you came to the front of the room to put a homework paper on the document camera or answer a problem on the board then you would be facing the class and could immediately see by raised hands, facial cues, and body language if anyone had questions or comments. When using Zoom, you will need to be more intentional. As you share, pause now and then to ask about questions or comments.

Your instructor can make one or more students "co-hosts". This will allow them to mute other students. It is probably not needed. But if you have kids or other distractions, feel free to ask that someone be made co-host so they can mute you when needed—because you are busy rushing to save your kid, or to turn down the pot on the kitchen stove that is boiling over.

Zoom will allow your instructor to record part or all of the meeting. If your instructor is not planning to record all of the meeting, feel free to ask the instructor, "Could you repeat that while recording it for us?" A student set as co-host can also record. If your instructor says or does something especially important or tricky, feel free to ask the instructor, "Could you repeat that with me recording it?". This might help even if your instructor is recording the entire meeting! It can be convenient to not need to find that moment in the longer video.

Images in Moodle Forums

Moodle forums can be a nice way to build a bit more community with classmates. Text replies are straightforward. Unfortunately, including an image in the body of what you write is really complicated. Here are the steps.

First turn on the advanced editing.

image 1

Then pick the icon for adding an image.

image 2

You probably want to upload an image from your computer, which hides behind the button named Browse repositories...

image 3

The option for Upload a file will be already selected and dark blue. Use the button named Choose File to pick the file to upload.

image 4

Then you might wonder what to do next. Try scrolling down to reveal the button that finishes uploading the file.

image 5

Finally, add some text, pick that the image is decorative, and finish with the Save image button.

image 6

Whew. You did it!

Google Drive

If class work requires you to turn in videos, your instructor will probably want you to submit them by putting them into a shared folder in your LCC Google Drive.

This has three advatages over using e-mail to turn in assignments.

First, your LCC Google Drive has effectively unlimited storage. You will not use up your allotted e-mail storage with those homework videos.

Second, your LCC Google Drive is easier to organize than e-mail. You can make a sub-folder for each class, or even different topics in a class. When you want to use old assignments to study for a test it will be easier than finding them in your e-mail archives.

Third, your LCC Google Drive is ideal for collaborative work. Items there can be edited by multiple people. It is much more awkward to do group work by sending files in e-mail.

To make a shared folder, first go to your Google Drive and in the top left click New.

image 1

Then pick Folder.

image 2

Give your new folder a name.

image 3

Your folder will appear in your list of drive items. Use the other mouse button to bring up a context menu. Pick Share.

image 4

In the box that pops up, look at the bottom right corner and pick Advanced.

image 5

In the middle of the box that pops up, you are told that the folder is currently "Private". Click on Change... to say you want to change this.

image 6

Pick either the top option to make the folder completely Public, or if you have materials only licenced for educational sharing you can pick the third option for only members of Lane Community College.

image 7

Close the pop up box with Share and then Done.

For a second time, use the other mouse button on the folder to bring up the context menu. Now pick Get shareable link.

image 8

Without any more clicking, the link to your folder is now copied to your computer's memory, the same as when you highlight something and press CTRL-C. So you can paste it with CTRL-V into an e-mail to your instructors.


Responsibilities

Student Responsibilities

Note: LCC students are bound by the college's student rights and code of conduct. This page focuses on study skills instead of those legal issues.

(Thanks go to many for helping compile these ideas, especially Deanna Murphy, Mary Stinnett, and Don McNair.)

Ask questions! The instructor does not know what is confusing to you unless you ask questions.

Be aware of the current topic and work towards mastering it. Avoid being "sort of" proficient at important topics. Be aware of how a new topic relates to old topics.

Never be content not understanding a class topic you are expected to understand. Ask questions! Learn it promptly. Visit study sessions, schedule individualized instructor help, or get help from the MRC or friends.

comic from Baby Blues about asking questions at school, by Rick Kirkmann and Jerry Scott, distributed on November 29th 2009 by King Features Syndicate

Do not fall behind. It is expected that students might be very confused about the current topic. After all, if students already understood it we would not need to teach it! But students should not be confused about past topics. If this is your situation do not despair, but prioritize getting the help you need. Use study sessions, the MRC, the textbook, help from friends, or other resources to catch up if you notice yourself falling behind.

Do not rely on extra credit to help your grade. There are no extra credit assignments.

Plan your term wisely, and budget your time carefully. Keep aware of deadlines. Know when you will have quizzes, midterms, and the final exam. If you are in the wrong class, change by the end of the second week. If you wish to change your grading option, do so by the end of the eighth week.

Attend classes. You are paying for an education; if you choose not to show up that's your business, but it's about as smart as ordering a pizza to go and then never picking it up.

Keep in touch when absent. To help build a useful real-life habit please treat the class like a job, and keep in touch with your instructor as you should with a boss.

Be aware of your dominant learning styles. Ask for instruction that fits how you learn. For example, if you are primarily an auditory learner then after the instructor demonstrates something it might help to ask if he or she can explain it out loud a second way. If you are a visual learner, read about the topic thoroughly before we discuss it in class.

Write neatly and organize your written work. For every problem, show at least one step or write an explanatory comment. Developing your ability to communicate mathematically in writing is incredibly important for future success in math classes.

Be polite. Be helpful to classmates who do not "get" something you understand. Talking during class time should be at most a quick and quiet whisper to help a confused neighbor (but it usually would be better if the neighbor asked a question!). Wait to pack up your materials until the class is dismissed. Keep all your papers. No phones or headphones during any kind of test.

Allow the class to challenge you. Achieve your potential. Be pleasantly surprised by the height of your accomplishments.

Academic Integrity

We do the kinds of real math that help with life decisions. This class is an opportunity to learn. It has been made as engaging, genuine, and fun as possible. It will be more than worth your time.

You will leave this class with more skill and job opportunities than most people for issues such as managing money, making informed plans, understanding health issues, teaching your kids, and recognizing when someone is lying with statistics. That is good stuff! It is the sort of "advanced adulting" that helps people manage a household and be secure in retirement.

Please do not treat this class as a to-do list of chores to grudgingly finish, or a series of tricky obstacles to navigate past. Those mindsets will cripple your learning, ruin your fun, and might even prompt you to consider cheating.

You should strive to end this class with positive momentum. Yes, real life issues might unavoidably drag you down. But the class itself—the teaching, assignments, website, textbook, and achievements—has everything carefully structured so you depart with power and a barbaric yawp. Even though we are living in interesting times, be assured you can be extra ready for your next math class, extra qualified for a job with what is in your brain and on a letter of recommendation, and extra happy with understanding yourself more deeply as a successful learner.

I cannot promise that the degrees and credits earned in 2020-2021 will not be somewhat suspect in the eyes of employers. Everyone knows that academic work done online is easier to do half-heartedly or to fake. I can only say that you will leave this class able to demonstrate your own ability: to me at the end of the term, and to other people in the future.

We work together. My work is to make many things possible. Your work is to claim them.

Instructor Responsibilities

I stop and ask for questions. After doing any problem on the board I stop and ask if anyone has questions. I may even call on students, especially if a few students are dominating the discussion while others are not participating at all.

I am aware of student learning styles. I help visual learners by including some of my spoken commentary on the board (or all of it if requested). I help auditory learners by providing videos. I help kinesthetic by providing time for group work in class and also including a few games and hands-on projects each term.

I have organized class times. Each class starts by summarizing what we will be doing that day. During class times I almost always work each problem freshly (instead of display step-by-step answers written in advance). This slows me down to note-taking speed and demonstrates that success in math is about understanding concepts rather than perfection in mental arithmetic.

I do short-term review each class. For the sake of smooth continuity, each class should start with some review of the previous class. In case the questions from students do not cover the "core" of what was covered during the previous class, I will have ready a problem from the material that does this.

I help students network with each other. Students who wish may give me permission to share their name and/or e-mail or phone number with classmates so I can help students form study groups or share notes. I can also post student notes in one of the departmental glass-fronted display cases if you want to share your notes with the world.

I provide practice exams and time in class to partly go over them together. This is the most efficient way I know to do long-term review as a group. Although students are responsible for asking questions, I sometimes help by providing obvious choices of what to ask questions about.

I plan unscheduled hours. The term includes a couple days during which no new material will be presented. These are initially scheduled during the last week of class time as review days. During the term, if it becomes apparent we need to spend extra time on a topic, I will move one of the "extra" days to avoid rushing through material.

I welcome ideas from students. Sometimes it is appropriate to take a tangent from the lecture to pursue a student's "what if?" type of idea. I also welcome comments about how the curriculum or my teaching can be improved.

I have consistent expectations for "good" answers to math problems. My standards are the same for problems I do at the board, homework solutions, and answers on quizzes and tests.

I am prohibited by College policy from sharing grade information by phone or e-mail.

Learning Styles

Virtuous Variety

If the human brain were so simple that we could understand it, we would be so simple that we couldn't.
    - Emerson M. Pugh

A nice Scientific American article describes what scientific studies have shown are important learning methods.

Students are more successful when they space out their study sessions over time, experience the material in multiple modalities, test themselves on the material as part of their study practices, and elaborate on material to make meaningful connections rather than engaging in activities that involve simple repetition of information (e.g., making flashcards or recopying notes).

The Yale Poorvu Center has its own advice.

Students will develop their own preferences for reviewing content, but these practices differ from deeper cognitive processes like "chunking," building on prior knowledge, making conceptual connections, and transferring knowledge.

Instructors can incorporate active learning, group work, and inclusive teaching strategies to invite students to engage their full faculties and experience peer learning. Multiple modalities can assist all students regardless of proposed learning style.

Learning outcomes improve when instructors help students think about how they drew connections, digested content, or arrived at conclusions.

In other words, a student who is focused and thinking is learning—but staying focused and thinking is hard! A variety of learning activities helps everyone stay on task.

Learning involves experience, practice, discussion, organizing the material both alone and with groups, making connections, attempting application, and then reflecting about the entire process. That is not a to-do list for students. It is an outline for worthwhile lesson design.

You might have heard about various "learning styles". Those are mostly a myth, as those two articles explain. But we should talk about them and their limited usefulness.

Reflect About Repetition

receptive styles

Many college students are familiar with the traditional trio of receptive styles: visual, auditory, and kinethetic.

These are receptive styles. They provide variety and help maintain interest.

Some skills do require a lot of repetition to learn. The three receptive styles might indicate what type of repetition most helps you most: flashcards, recitation, or practice.

But the topic and situation might matter more, even for repetitive memorization. For example, in our math class I have known some students whose biggest help with learning to do food preparation problems came from explaining the process to a classmate, yet these same students needed to repeatedly do practice tests to master the problems about saving for retirement.

Reflect About Homework

Skip Downing, in his book On Course, proposes a set of four "learning styles". These focus on what to do outside of the class when what you learned in class only introduced a topic and you need to learn more. What questions do you ask yourself? What types of researching, memorization, and discussion do you enjoy most?

Pages 213 and 214 of his book describe these four learning styles in more detail. You can read a PDF copy of those two pages.

As before, Downing's tips are worthwhile if they help keep you focused and thinking when doing homework. They work if you use them to think more about your own learning. They are not intended to limit you or box you in to a single category.

Brain Awareness

Where there is personality, there is discord.
    - Terry Pratchett

Internal Perception

Our body sends us subtle signals to recommend certain actions. Noticing these signals tells us when we are hungry or thirsty, hot or cold, nauseous or creeped out. Awareness of those examples and our body's many other metabolic and "gut feelings" is called interoception.

Our body also has receptors in our muscles to provide body awareness. If we lift our arm above our head we can sense this without checking in a mirror. If we slowly cross our hands or our feet we can tell when they are above each other. This awareness is called proprioception.

Most people ignore some of their body's interoceptive and proprioceptive signals. We often need to focus on these sensations to decide if our hunger means "It would feel nice to snack" or "I should eat now or I'll get hangry". We often need to focus to feel our feet in our shoes, or how the weight of our head is pressing down on our neck.

(We can watch our kids learn interoception and proprioception. People with sensory processing issues develop less of a constant background amount, and must focus to sense what others naturally notice.)

Anxiety disrupts and confuses our interoception and proprioception. An anxious student often "hears" false cues about hunger and breathing, and interprets signals meant to inspire activity and engagement (increased heart rate, tensed shoulder muscles, etc.) to instead signify danger. During a test, watch your classmates who normally sit quiety start touching their faces, drumming their fingers on their desk, and in other ways subconsciously try to increase their interoceptive and proprioceptive self-communication.

Anxiety thus robs us of agency. We become disconnected from our bodies, and unable to connect to our feelings. Our internal cues to the mildness or severity of a frustration go missing, so any frustration seems intolerable. Our gut feelings of safety or danger become confusingly entwined. Bodies that are too often exposed to this state recognize its unhelpfulness and replace it with a numb fog that is less disruptive but not any more helpful. Lacking words for our feelings is called alexithymia.

Alexithymia leads to personal baggage. This happens even when we pass through situations successfully. Accomplishments feel hollow when made while disconnected from our bodies and agency—especially if in that wordless numb fog. We know we survived but cannot own the victories.

Almost everyone feels some amount of math anxiety. What can we do about it?

Some Bad Science

In the 1960s, Michael Gazzaniga and Roger Sperry studied patients in whom surgeons had cut certain connections between the two halves of the brain to try to reduce epileptic seizures. In those patients, the halves would develop specializations in different tasks. This led to an incorrect popular belief that the left and right halves of brain worked quite independently.

Modern fMRI research shows the whole brain's tremendous networking complexity. For normal brains, in which surgeons have not cut any connections, the two halves work closely together.

Some Good Science

Even though the brain works as a whole to do its things, some types of things do go together. Certain types of brain activity happen quite naturally together.

We know that our muscles have some patterns that fit together easily and others that resist each other. It is much easier to circle both arms the same direction than in opposite directions. You can bend forward more deeply after massaging the soles of your feet, but less deeply after sitting on the front edge of a chair.

Our brains work the same way. Some patterns of thinking fit together easily and other patterns of thinking do not.

Most famously, there are maybe grooves of thinking that fit together, and there are now grooves of thinking that fit together. Mixing can work but does not flow as naturally.

The Maybe GrooveThe Now Groove
uses large-motor muscles consciouslyuses metabolic and proprioceptive muscles unconsciously
ponders what might beattentive to what is now
abstract thoughts about relational informationpictoral and emotional thoughts about sensory information
focuses on complex possibilities—scenarios, comparisons, "if..." fictionsfocuses simply on actual, individual stimuli
judgmentally categorizes things as good/bad or wanted/unwanted curiously observes things as they are
loves to create rules and restrictionsloves to openly accept and experience
selfishly prioritizes grasping pleasure and avoiding fearcompassionately prioritizes a mellow and joyful "energy in the room"
analytic external point of view—Cartesian dissection and Systems Theory networkssensitive internal point of view—how do my components feel, and how do I feel as a component?
rapid pace, stimulatedmellow pace, relaxed

When our brain is in the Maybe Groove we are not relaxed. We worry, plan, and make up stories—usually pondering the past or future instead of dwelling in the present moment. We think abstractly. We try discern differences, see patterns, make judgments, analyze relationships, and create rules.

When our brain is in the Now Groove we are mellow and relaxed. We sense the present moment without adding commentary. If the present moment is happy, we are happy. We try to feel togetherness. We acknowledge community without judging or evaluating relationships.

Those two brain grooves are important for a math class!

Lego Movie not listening meme

Most of what we do in a math class is in the Maybe Groove. We study patterns, look at differences, and judge whether a process or problem is correct or wrong. As we spend time in the Maybe Groove, our thoughts naturally become more busy and worried. We get less relaxed. Our thoughts get stuck in comparisons, judgments, and nit-picking. Distracted by our own minds, we have trouble paying attention to what is happening around us.

We can be aware of this and purposefully add some Now Groove style thinking. We can be happier math students if we keep those two styles of thinking balanced.

combo move But it takes a little effort. Just as we must concentrate a bit to circle our arms in opposite directions, we must be aware and intentional to put some extra Now Groove into a very Maybe Groove mental situation. It is a bit like doing a combo move in a video game. At first the extra effort takes practice. But it can become a habit that you naturally do when it is needed.

We can do this by focusing on metabolic and proprioceptive muscle use. Pay attention to something metabolic: breathing, heartbeat, diaphragm, stomach, etc. Also pay attention to something proprioceptive: feel where our arms and legs are, how our scalp feels, how you press against your chair. Sit or stand still to stop large-motor muscle use.

We can do this by focusing on immediate sensory information. What colors can we see that we were too busy to notice a moment ago? What sounds and smells do we notice now that we are paying attention? It helps to acknowledge this changing stream of sensory input wordlessly.

If we can keep that focus for a few minutes then more of our thoughts will flow in the Now Groove.

This should sound familiar. Many, many religions and philosophies have developed their own ways of doing this, and expanding on this. These traditions are called praying, meditating, communing, mindfulness, self-soothing, and many other names.

But for us the importance is just to recognize that our thoughts fit more or less easily into two grooves, just like our muscle movements can fit more or less easily together.


Success

All I need is my brains, my eyes and my personality, for better or for worse.
    - William Albert Allard

What is success in our math class?

As mentioned above, success is not about passing the class in ten weeks if your real-life circumstance require you to take twenty weeks. Success is instead about three things.

First, success is about growing your critical thinking skills. Everything we do is about critical thinking: understanding a lecture, asking a question, participating in a discussion, studying at home, analyzing a math book, and organizing your notes and brain before a test.

Second, success is learning to stand on your own two feet in a math class. Successful students motivate themselves to do necessary work, manage their time sufficiently, have experienced the benefits of group work, know where and how to ask for help outside of class, accept responsibility and accountability for their choices, and leave the class with solid study habits.

Third, success is seeing yourself as belonging. Successful students are no longer afraid of the math topics, have accumulated enough learning to view themselves as effective students and learners, have experienced enough small victories to understand how learning is fun, and no longer doubt whether they belong in a math class.

Let's look more carefully at these three elements of success.

Critical Thinking Skills

Critical thinking is thinking about your thinking while you're thinking in order to make your thinking better.
    - Richard W. Paul

College culture values Critical Thinking Skills. What are these?

Students who arrive from college directly from high school can be surprised by this change. High school culture mostly cares about learning objective, concrete, memorizable facts and procedures. But even when college assignments require a lot of that type of learning, college culture do not value it as much as critical thinking.

This change can be scary! Most students who graduate high school are experts at extracting memorizable facts and procedures from a teacher's lectures and demonstrations, and from textbooks. But when students arrive at college they are surprised to discover that their expertise is valued little, and is only a minor part of what will be tested. Eek!

The good news is that your college instructors will not immediately expect you to be good at those skills. Instructors of lower-level college classes realize that high schools often do not teach critical thinking skills. These instructors know they need to teach these as part of the class topics.

Initially, your job is be patient with teaching that is not about memorizable facts and procedures.

Some discussions, activities, and assignments will seem to be pointless or all about opinions. These are almost certainly trying to teach you critical thinking skills. You might not realize how or why. But that is almost always what is happening.

However, nobody learns from pointless work or opinions. When tasks seem to be like that, ask which skills the task is trying to teach you. That can change the task from seeming pointless or opinion-ish into something you can learn from.

The great news is that critical thinking skills are a lot more interesting than memorizable facts and procedures. You will soon learn to recognize when and where these skills are being used. Then discussions and essays will become more fun than similar high school tasks.

Dignity

You have good reason to believe that you can trust yourself. Not because you've always made the right choices, but because you survived the bad ones.
    - Sandra King

A single word—a key philosophical term—has for centuries encompassed both "learning to stand on your own two feet" and "seeing yourself as belonging". That word is dignity.

A person with dignity stands on his or her own two feet. No tyrant or issue is conquering them completely to make them bend their knee. Adults can "stand with dignity" in a way children cannot, because adults are responsible and accountable in a way children are not.

Yet people with dignity are standing as part of something bigger than themselves. Dignity requires solidarity. Dignity requires a virtuous community. And although our culture's stories might emphasize when dignified people have stood together in defiance or protest, dignity does apply equally well when untroubled people stand in celebration of the values and virtues that unite them.

(However, when Robin Hood swings in on a rope, and stands with a jaunty knee, hands on hips, and devilish smirk, we all agree that pose is too egocentric to be called dignified despite his community or its virtues. Dignity is about belonging, not standing out.)

Is there some obvious philosophical link between these two aspects of dignity? Does responsible and capable accountability somehow have an inherent connection with belonging to a virtuous community? So far a link eludes me. But dignity means both, and always has.

To show dignity someone must show courage. This is easy in our math class. Our class has no trigger warnings. Can you imagine if the instructor said, "I am about to talk about fractions. Anyone who has had bad experiences with fractions, or suffered emotional harm because of fractions, might want to leave the classroom." Everyone would leave, even the instructor!

kicking the snot out of inner demons Of course we have emotional baggage. Math victories happen as we recognize just which inner demons haunt our math ability, acknowledge how they do that, and then kick the snot out of them.

Be strong and brave! A math class is a rewarding place, not a cozy place.

At the end of each term, ask yourself how your experiences affected your dignity.

Hopefully your dignity was helped by your learning experiences, by instructors and staff behaved, by how you treated yourself, by how college systems and procedures treated you, and by your participation in college community.

Be bold. Beware of tricking yourself in a common but harmful way: many choices that appear to minimize short-term discomfort often actually cause long-term discomfort. Turn in all assignments, even if some will earn a bad grade. Ask questions in class, even if they reveal your confusions. Visit office hours, even if that reveals your weaknesses to the instructor. And so on. All of that stuff helps pass the class and bring long-term life success.

Never quit because of anxiety. In fact, ignore anxiety as much as possible because a wise person makes use of good advice and anxiety always gives terrible advice.

Activities to Respect

Great things are done by a series of small things brought together.
    - Vincent Van Gogh

We can wrap up our thoughts on success, critical thinking, and dignity by pondering what math class activities earn our respect.

silly Dora the Explorer saying

• Right answers that show me what I know
• Wrong answers that show me what I know
• Questions and guesses that no matter what the answer show me what I know

• Asking questions to resolve confusion
• Asking questions to calm uncertainty
• Asking questions to explore what happens

• When a math topic is scary
• When a math topic is no longer scary
• When it doesn't matter if a math topic is scary, I am doing it anyways

• Math is a bunch of problems that need answers (I start by hunting for the answer)
• Math is a bunch of problems that need new tools (I start by hunting for the right tool)
• Math is a bunch of tools to answer other problems

• When I can first see something in class, and then learn by myself
• When I can first see something in class, and then learn in a group
• When I can first see something by myself, and then learn by myself
• When I can first see something by myself, and then learn in a group

• Trying to fix an ignorance arising from never before having been taught that topic at all
• Trying to fix an ignorance arising from never before having been taught that topic skillfully
• Trying to fix an ignorance no matter what its source
• Establishing accountability for learning and growth


Privilege

Choices

Those who have not learned to do for themselves and have to depend solely on others never obtain any more rights or privileges in the end than they had in the beginning.
    - Carter Godwin Woodson

I know what privilege sounds like.

Privilege can look like many things. But in my experience it almost always sounds like a certain phrase thought or said aloud: "But they always have a choice!"

Many very privileged people think everyone always has a choice. Can't you just choose to shrug off the negative messages? Can't you just choose to spend time with a healthy group of friends? Can't you just study more? Can't you just choose to avoid alcohol?

Many very privileged people understand that some people do not always have a choice. (The negative messages will eventually penetrate. There is no functional crowd to hang out with. Worrying about how to afford food tomorrow totally destroys the ability to do homework. Drinking is what men in that place must do.) Yet they fail to see the deeper truth.

The deeper truth is twofold. No one always has a choice. Moreover, for people who are privileged, the lack of choice is often a lack of the option to fail.

Someone was there (of course!) to encourage you so the negative messages did not sink in. Someone was there (of course!) to steer you away from the unhealthy friends to the more functional crowd. Someone was there (of course!) to make you do your homework whether you wanted to or not. Someone was there (of course!) to keep your drinking from getting out of hand, or if it was already out of hand to make you deal with the addiction properly.

Scaffolding

What a child can do in cooperation today, he can do alone tomorrow.
    - Lev Vygotsky

Privilege is a great thing! It is nice when someone "has got your back".

Privilege is not wimpy or cheating. A soldier who goes into battle alone is especially foolish, not brave. A student who avoids office hours and tutors is fleeing help, not admirably independent.

LaneCC Student Resources

Students should have privilege. This is why privilege is given out freely at LaneCC like candy on Halloween.

You can visit an Early Outreach Specialist to quickly learn about college resources. You will be amazed how many resources there are, and how many people are ready to say "I got your back".

Your instructors, tutors, academic advisors, counselors, TRiO staff, and many other people all want to be those caring allies who will encourage, advise, and nag you, so you cannot choose to fail.

The image to the left leads to my own compilation of LaneCC student resources. But I am always a bit out-of-date.

A famous psychologist named Vygotsky used the word scaffolding to describe the support people need to achieve their next milestone or plateau. It is an old term very rooted in educational theory.

Good teaching is half scaffolding and half morale management. Keep an eye out for both in this website and during class.

Onward and Upward

You are defeated not when you fall down, but when you fail to rise up.
    - Anonymous

flawed illustration of equality versus equity

A famous illustration was comissioned in 2016 by The Interaction Institute for Social Change to illustrate the problem with providing people with equal support.

Unfortunately, this illustration has such big problems I am drawing a big red X over it.

Here is my improved version, thanks to the help of my old-school Lego friends.

Lego equity 1   Lego equity 2   Lego equity 3

Much better!

• The three Lego people are the same. Math students, and people in most other situations, are much more similar than they realize. The images should emphasize our similarities, not our differences.

• The starting support structures are different. Math students arrive at the first day of class with very different personal histories and skills. We each have our own helpful scaffolding.

• The starting support structures are all incomplete. The brown support has solid blocks but they are barely assembled in a stable way. The red support hass small bricks, and is quite unstable. The yellow support is just three unconnected things that look ready to roll over.

• The people work together to improve their support structures. These study skill tips have already emphasized class participation and homework groups. Even the college Early Outreach Specialists cannot build your support structure for you. The work takes many hands, including your own.

• More blocks appear as the support is improved. Our original support structure might need some patching up or reorganizing. But no person has to give up pieces of his or her original support. We can share ideas and habits without diminishing ourselves.

• The end result is greatly improved but still incomplete. All three people are higher than before. But two people end up balancing on a thin beam made of two red bricks. Two people still have holes in their structures. We never finish learning. There are always habits, skills, and people that could help us more.

Life is not about some outside influence handing you a pre-built support structure. The closest anyone gets is an upbringing full of hard work where people who love them try to deny them the option to fail. (And we all know stories of people whose rebellion or terrible choices undermimed their well-meaning governance.)

Life is not about climbing as high as someone else. They surely would say that what they are standing on is also in many ways incomplete and unstable. They are not so different from you. They also need community more than competition.

Remember that success is about critical thinking. The Lego people have success because they had learned where, how, and with whom to build better support whenever their current structures were insufficient.

Remember the aspects of dignity. The Lego people got better structures to stand on, developed stability standing on their own two feet, and had belonging in a cooperative community.


Non-Fiction Reading

Young people should not donate money to charity, but should buy non-fiction books instead.
    - a businessman's purposeful exaggeration

(I cannot find the article I once read that had the above quotation. If you find it please let me know!)

That quotation is wrong. Giving is good for us. Many studies have proved both short- and long-term benefits from having generosity in personality and habit.

But the article from which I summarized the quotation did make a valid point.

Individuals in the U. S. donate more than $286 billion to charity each year. The average household in the U. S. that gives money to charity donates about $2,500 per year.

Bequests from people's wills are not included above. These add another $35 billion each year.

(Then U. S. foundations and businesses donate another $87 billion each year. And all these numbers are increasing.)

So as a student whose career has not yet matured, donating $20 to charity can be great for your personality and habits. But that amount is almost always insignificant for the charity.

The point of that lost article was that for that same $20 you could buy a non-fiction book that could help your career potential. Reading the right books now could make a huge impact on your finances in the future. Then you can be generous in amounts that noticeably change the world.

So do both. Respect your generosity and your potential.

By the way, the strong urge to donate to charity is very much a part of U. S. culture. Canadian individuals on average only donate half as much. Continental Europeans average one-seventh as much. It is hard to find more data for other countries.